
Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Christoph H. Lampert · Jan Peters

Real-Time Detection of Colored Objects In Multiple
Camera Streams With Off-the-Shelf Hardware Components

Received: date / Revised: date

Abstract We describe RTblob, a high speed vision sys-
tem that detects objects in cluttered scenes based on
their color and shape at a speed of over 800 frames per
second. Because the system is available as open-source
software and relies only on off-the-shelf PC hardware
components, it can provide the basis for multiple ap-
plication scenarios. As an illustrative example, we show
how RTblob can be used in a robotic table tennis sce-
nario to estimate ball trajectories through 3D space si-
multaneously from four cameras images at a speed of 200
Hz.

1 Introduction

Many computer vision applications, e.g . in robotics or in-
dustrial inspection, make use of camera images as visual
input. In particular, many interesting applications re-
quire a continuous visual input stream that has to be pro-
cessed under real-time conditions. For example, vehicle
driver assistance systems must observe street scenes [1, 2]
or the driving person [3] in real-time. Similarly, gesture
recognition systems or visual surveillance tools are most
useful when they are able to process video material on-
the-fly, such as [4, 5, 6]. Real-time visual processing is
also required for continuous environmental mapping and
localization for robots [7] or for wearable computers [8].
Certain robotics applications, such as visual servoing [9],
or throwing and catching of balls [10] can even require it
to process 100 images per second or more as they have
to react to very fast changes in their environments.

In this work we study the field of real-time localiza-
tion and tracking of objects in natural environments. We
introduce a new system called RTblob that is based on
four design criteria that we believe need to be fulfilled for

Christoph H. Lampert
Institute of Science and Technology Austria
Am Campus 1, 3400 Klosterneuburg, Austria
E-mail: chl@ist.ac.at

Jan Peters
Max-Planck Institute for Biological Cybernetics
Spemannstr. 38, 72076 Tübingen, Germany
E-mail: jan.peters@tuebingen.mpg.de

any vision system that wants to find wide application in
real-time and interactive scenarios. it has to be simple,
high performing, adaptable and affordable.

Simplicity is relevant, because one often does not
trust a system if one does not fully understand it. Such
systems are useful in isolated or academic applications,
but they are typically difficult to integrate into actual
production systems. High performance, both in speed
and in quality, is clearly necessary, otherwise one has
no benefit from using such a system. Adaptivity is im-
portant, because every application scenario is different,
and no black box setup will be able to fulfill everybody’s
needs simultaneously. Finally, it goes without saying that
a system that is too expensive in either its software or
its hardware components will not find wide application,
either.

RTblob is designed to fulfill all of the four criteria
simultaneously. It consists of a feed-forward processing
pipeline for camera images that is illustrated in Figure 1.
To achieve high throughput at low cost, the most com-
putationally intensive tasks are executed on the GPU of
a PC graphics card. In particular this is the central ob-
ject detection module that localizes objects in images as
the spatial maximum of a linear filtering operation [11].
The filter used can be changed with the same rate as the
images are processed. This gives RTblob large flexibil-
ity what objects to detect: simple shapes such as circles
of fixed size can be detected by a single filtering opera-
tion. For detecting not rotationally invariant objects in
general positions a single filtering operation is not suf-
ficient, because the filter response is typically rotation
dependent. We can detect such objects by calling the
filtering step multiple times with rotated version of the
object filter and keeping the detection of maximal score.
Objects that undergo significant size changes can be han-
dled analogously by applying filters of different size, but
we also discuss a more elegant solution at the end of the
paper.

In the following, we will concentrate our description
on the detection of uniformly colored balls. This is a par-
ticularly simple and robust task, since balls appear as cir-
cles in the image from every perspective viewpoint, and a
uniform coloring allows the use of efficient color filtering

2

200 fps
Camera

200 fps
Camera

200 fps
Camera

200 fps
Camera

DeBayering

DeBayering

DeBayering
ColorFilter FFT Mult. IFFT argmax

Robot Workstation

3D
Position
Estimation

refine

Vision Workstation

Planning
and
Control

DeBayering

Fig. 1 Visual processing pipeline: The PC (central rectangle) receives image data through Ethernet connections (dashed
lines) from the cameras. The image processing is performed in large parts on the PC’s graphics card (gray rectangle), only
the debayering step is performed in parallel threads on the CPU. The resulting object coordinates are passed on to a second
PC (right rectangle) for further processing and robot control.

for preprocessing. As we will see from the experiments,
RTblob can achieve over 800 frames per second through-
put in this setup on ordinary PC hardware, and we use
this to detect the ball in multiple camera streams in par-
allel. By triangulating the detections from overlapping
camera view we obtain trajectories in three-dimensional
space with high time resolution and low latency.

We believe that RTblob has the potential to become
the seed for a standard platform for interactive applica-
tions as well as a valuable teaching tools for GPU acceler-
ated high-speed vision tasks. To support this, the source
code of RTblob is available under a free software license
that permits modification as well as redistribution.

In the rest of this paper, we describe all relevant com-
ponents of RTblob. We start by introducing related work,
followed by an explanation of the design decisions that
are necessary to make RTblob fast enough for perform-
ing real-time detection on off-the-shelf hardware. Sub-
sequently, we explain the image processing steps that
RTblob uses for object detection. To provide insight how
RTblob works in a practical application, we demonstrate
its performance on a task of ball tracking in 3D space, as
part of a system in which a robot arm plays table tennis.
At the end of the paper we give an overview of potential
extensions and future work.

1.1 Related Work

Because of the importance of the application, many com-
mercial as well as academic solutions for localizing and
tracking objects in image streams have been developed.
Commercially available solution achieve high performance
and robustness by the use of dedicated hardware, e.g . ac-
tive illumination by pulsed LEDs and IR reflective mark-
ers for the VICON systems1. Marker-less systems typi-
cally rely on embedded hardware, e.g . a digital signal
processor, to do full image stereo reconstruction. The
resulting depth field can be used to estimate the 3D po-

1 http://www.vicon.com

sitions of textures objects, as done e.g . in the Organic
Motion2 or Tyzx 3 solutions.

Academic vision systems are typically software-based
and therefore more affordable. For example, a software
system for tracking a marked object has been developed
in [12] for the task of robotics tweezer manipulation. The
system identifies a marker on the tip of the tweezer by
thresholding an intensity image. By working in a region
of interest only, this is possible at a speed of up to 500 Hz.

For detecting more general objects, even generaliz-
ing to object categories, sliding-window based object de-
tectors have proved very successful. These first learn a
classifier function from training examples, e.g . by boost-
ing [13] or with a support vector machine [14]. They then
evaluate this function over many candidate regions in
every image, which is possible efficiently by adopting a
cascaded approach. Thereby, they can detect the posi-
tions of objects as rectangular image regions. When even
higher throughput of hundreds or thousands of frames
per second is required, systems with additional hardware
support has been devised, in form of FPGAs [15, 16, 17]
or specially designed chips [18]. Such systems can pro-
cess all pixel in an image in parallel, allowing them to
estimate local motion with very high speed. The global
object motion can then be inferred by integrating over
motion paths. However, because of the high cost of cus-
tom hardware they have not found widespread use so
far.

2 RTblob Design and Hardware

As explained in the introduction, we have designed RT-
blob with the goal of being simple, high performing, and
adaptable. This leaves us with two software-based pos-
sibilities how we could perform object localization in
image sequences: per-frame detection or tracking. In a
per-frame detection setup, each image of the sequence is
processed independently by applying a still image object
detection algorithm. As the result, one obtains robust de-
tection results, but this comes at a cost of relatively high

2 http://www.organicmotion.com
3 http://www.tyzx.com

3

computational effort, because all image pixels need to be
processed in every time step. Tracking aims at reducing
the computational cost by searching for the object only
in a region of interest, and this is updated from image to
image based on an estimate of the object motion. For RT-
blob we choose a per-frame detection setup and we over-
come the computational bottleneck by making use of the
massively parallel architecture of the GPU in a modern
PC graphic card. This way, we achieve high throughput
while keeping the necessary computational resources to
an acceptable level. The integration of a tracking module
would still have advantages, e.g . for cameras with pro-
grammable region of interest, or to improve the detection
quality by making the system adaptable to specific ob-
ject instances. We leave this to future work.

Because we also want to keep RTblob affordable, we
avoid “intelligent” but expensive components such as
cameras with built-in computing capacities, and we rely
only on off-the-shelf components. Consequently, any mod-
ern PC can serve as the hardware basis of RTblob. In our
setup we use a Dell Precision T7400 workstation with
two 3.4 GHz Intel dual core CPUs. As we will see later,
this alone would not be sufficient for the necessary im-
age processing tasks. Instead, we benefit from the vast
increase in compute capacities of PC graphics cards over
the last years, and from the development of new pro-
gramming languages that support general purpose com-
putation on these platforms. Specifically, RTblob relies
on the CUDA framework for NVIDIA graphics cards [19]
under GNU/Linux. The CUDA programming language
integrates seamlessly into C/C++, thereby making it
possible to write hybrid programs that run partly on the
CPU and partly on the GPU. Additionally, NVIDIA pro-
vides an extensive SDK4 under a royalty-free open source
license that, in particular, allows the creation and distri-
bution of derivative works. The NVIDIA GeForce GTX
280 graphics card, which we use as hardware platform,
is available at a street price of less than $300.

Most high frame rate digital cameras transfer their
image data in uncompressed form, and this makes fast
data transfer between cameras and PC a crucial aspect
of any high speed vision system. Until recently, only
costly frame grabber card, e.g . with the CameraLink in-
terface [20] were able to stream images at high enough
frame rates. The recently introduced GigE Vision stan-
dard [21] provides a more affordable alternative, allowing
for the first time to transfer several hundred full-sized
cameras images (VGA or even larger) per second using
only off-the-shelf networking hardware. In our setup, we
installed an Intel PRO/1000 PT Quad Port gigabit Eth-
ernet card (≈ $350) to which we connect four Prosilica
GE640C cameras with Pentax 16mm lenses.

We link the cameras with a simple hardware trigger
cable that ensures that the camera exposures are syn-
chronized, and we use alternating image buffers, such
that the next exposure can already be started when the

4 http://www.nvidia.com/object/cuda home.html

previous image is still transferred to the PC. At a per-
unit cost of approximately $1500, the cameras are the
most expensive components in our setup. However, cheaper
solutions can easily be thought of, e.g . when a through-
put of fewer than 200 fps is sufficient, or when only im-
ages smaller than 640 × 480 are required. In many such
cases, consumer webcams with USB connectors will be
sufficient. Alternatively, the described setup can also be
extended to systems with faster or more cameras, if nec-
essary by using CUDA’s capability to distribute compu-
tation between multiple graphics card.

3 Object Detection

Even for the reduced class of objects that we chose as tar-
gets, many different detection algorithms have been de-
veloped, based, e.g ., on binary contours [22], background
subtraction [23] or the Hough transform [24]. Following
our objective of simplicity and high speed, we use a feed-
forward architecture based on a linear shift invariant fil-
ter (LSI) [11]. This choice results in a pipelined approach
(see Figure 1) in which we have divided the computation
between CPU and GPU to achieve minimal latency and
maximal throughput.

Algorithm 1 (Object Detection Pipeline)
1: Transfer Image Data: Camera to Main Memory
2: Apply Debayering
3: Transfer Image Data: Main Memory to GPU
4: Color Filtering
5: Filter Response Maximization:
6: Compute Fourier Transform
7: Multiply with Transformed Filter
8: Compute Inverse Fourier Transform
9: Compute argmax of Response

10: Refine to Sub-Pixel Accuracy
11: Transfer Object Coordinates: GPU to Main Memory
12: Triangulate 3D Object Position from 2D

The individual steps of the algorithm are listed in
Algorithm 1. In the following, we will explain their im-
plementation, concentrating on the steps that specific
to our real-time system with GPU support, whereas for
classical image processing techniques we will rather refer
to existing textbook material.

1) Image Transfer from Cameras to CPU

Transferring the images of four 640 × 480 cameras at a
frame rate of 200 Hz to the computer’s main memory
requires a network bandwidth of 234 MB/s plus minor
communication overhead. By use of DMA-enabled net-
work drivers and jumbo MTU packages, the chosen four
port gigabit Ethernet card can sustain this datarate in
a PCI Express slot with only low CPU load.

4

Fig. 2 Debayering: One-sensor color cameras have a built-
in grid of color filters such that each pixel captures either
red, green, or blue light (left). From the resulting intensity
image (middle) one reconstructs a color image (right) by a
procedure called debayering.

2) Debayering

In order to save manufacturing cost and transfer band-
width, affordable digital cameras for machine vision typ-
ically contain only one CCD or CMOS sensor chip, and
can therefore capture only a single-channel intensity sig-
nal. To nevertheless obtain color images that have three
channels (red, green and blue) from this setup, small
color filters are attached to each sensor cell, such that
each pixel measures only either the red, green, or blue
intensity of incoming light. The results is a single chan-
nel image representation with reduced color resolution,
called Bayer pattern. The process of extrapolating full
RGB images from the Bayer patterned images is called
demosaicing or debayering [25], see Figure 2.

Bayer patterns come in different spatial arrangements
and with filters of different spectral responses. There-
fore, camera manufacturers usually provide debayering
routines as part of their camera SDKs. In our case, we
rely on the default routines provided by Prosilica. While
in principle we could also perform the debayering on the
GPU, this would require different CUDA routines de-
pending on the Bayer pattern layout of the cameras’ sen-
sor chip. In addition, the routines provided by the camera
manufacturer typically produce higher quality color im-
ages, because the spectral response curves of the sensor
chips are taken into account. Performing debayering on
the CPU is a computationally expensive task, but it can
be parallelized, such that the four camera streams in our
setup are processed by four independent CPU threads.
Note that another positive side effect of CPU-bayed de-
bayering is that the total amount of computation is split
between GPU and CPU, which leads to higher overall
throughput than for a system where all computation is
performed either only on the CPU, or only on the GPU.

3) Image Transfer: CPU to GPU

Debayering alone already causes a CPU load of approx-
imately 50% on each of the 3.4 GHz CPU cores of our
system. Therefore, we perform the remaining image pro-
cessing steps on the graphics card. Copying the image
data from the PCs main memory to the graphics card’s
RAM requires a continuous memory transfer bandwidth

of 703 MB/s, because the amount of image data has been
tripled by the conversion from a Bayer pattern to a color
image. Modern graphics cards with PCI Express inter-
face can easily sustain this rate, e.g ., our local setup
achieves a throughput of over 5000 MB/s using so-called
pinned memory transfer routines of the CUDA language.

4) Color Filtering

The detection of objects with a characteristic color has
the advantage that we can use fast, color-based prepro-
cessing operations. In RTblob we can measure the in-
terestingness of each image pixel by comparing its RGB
value with the reference RGB tuple (Rref, Gref, Bref). The
result is a single-channel interest image I[u, v], which in
our case is calculated as

I[u, v] = 1−
(

(gRRγ [u, v]−Rref)1/γ

+(gGGγ [u, v]−Gref)1/γ (1)

+(gBBγ [u, v]−Bref)1/γ
)
/3,

where R[u, v], G[u, v] and B[u, v]) are the color channels
of the image to be processed in floating point represen-
tation in the range [0, 1]. (gR, gG, gB) = (1., 1.15, 1.3) are
camera dependent gain factors and γ = 0.5 is a gamma-
correction factor.

Color filtering is a step that operates independently
on each image pixel. This makes it very easy to par-
allelize on modern GPUs that can manage hundreds of
thousands of threads with virtually no overhead: we sim-
ply start one thread for each pixel. Note that, because no
quantities have to be precomputed for Equation (1), we
have the choice to change the reference color instanta-
neously, and, e.g ., search for a differently colored object
in each of the camera streams.

5) –9) Object Detection

The step of actually detecting the most likely target ob-
ject in an interest image is a two-step procedure: we ap-
ply a linear shift invariant filter, and we identify the posi-
tion of maximal filter response. Figure 3 shows examples
of the different processing stages for successful and un-
successful object detections.

To formalize this, let F be a w × h sized filter mask
that is constructed to have a high response at the ob-
ject center. Examples of such filters will be discussed in
Section 4.

The task of object detection can then be written as
finding the pixel position of maximal filter response in
the image, i.e.,

[û, v̂] = argmaxu,v Fu,v ∗ I (2)

where ∗ is the 2D convolution operation, and Fu,v de-
notes the filter mask F shifted to the position [u, v] and

5

padded with zeros to be of the same size as I. While
a naive implementation of the convolution requires four
nested loops and has O(WHwh) runtime complexity, a
more efficient way of evaluation is available by use of the
convolution theorem [26]:

= argmaxu,vF−1 (F(F) · F(I)) [u, v] (3)

where F denotes the Fourier transform and F−1 the in-
verse Fourier transform. As long as the filter does not
change between frames, F(F) remains constant and can
therefore be precomputed. Consequently, we can com-
pute Equation (3) by only one forward and one back-
wards FFT operation, with a per-pixel multiplication in
between, and a final pass through all pixels to identify
the maximum. This results in a computational complex-
ity of O(WH logH + HW logW), independent of the
image contents.

Note that the detection equation (2) is not invariant
against rotation or scale changes. If such properties are
required, one needs to perform multiple searches, typi-
cally with rotated or scaled versions of the same filters,
and keep the best matching detecting. This is not re-
quired in our setup of colored ball, because balls them-
selves are rotationally invariant objects, and a single lin-
ear filter can detect them even under certain changes of
scale.

It is possible to modify Equation (2) to a template
based maximum-likelihood prediction, such as [27]: given
a w× h sized template T of the expected object appear-
ance and assuming Gaussian image noise, the maximal
likelihood position [û, v̂] of best match of T within I is
given by

[û, v̂] = argminu,v ‖T −Ωu,v(I)‖2 (4)

where Ωu,v(I) denotes the w×h sized rectangular region
in I around [u, v]. We can decompose this using

‖T −Ωu,v(I)‖2 = ‖T‖2 + ‖Ωu,v(I)‖2 − 2T̃u,v ∗ I, (5)

where T̃ denotes the mirrored version of T , i.e. the tem-
plate in which left and right as well as top and bottom
directions are swapped. Because the first term does not
depend on [u, v], we can disregard it for the minimiza-
tion. The second term can be precomputed with constant
time effort per pixel using e.g . integral images [28]. Con-
sequently, the position of best template match can be
calculated using a variant of Equation (3) using T̃ as the
filter mask.

Clearly, computing several hundred Fourier transforms
and inverse Fourier transforms of 640 × 480 images per
second is computationally demanding. However, FFTs
are also operations that can be parallelized well on the
GPU. Because these implementations are most efficient
for image sizes that are powers of 2, we perform the
FFT on a version of the image that has been rescaled
to the size of 512× 512. All modern graphics cards con-
tain hardware units for texture rescaling, which enables

them to change the image resolution basically free of
computational overhead. Subsequently, we multiply the
resulting Fourier spectrum with the Fourier transformed
filter mask (also sized 512× 512). As a per-pixel opera-
tion this again is possible very efficiently by starting as
many GPU treads as there are pixels. After the subse-
quent inverse FFT step, we need to identify the position
of maximal filter response in the image. While on a se-
quential processor, no better solution exists than a linear
scan through the data, the highly parallel GPU architec-
ture can solve the task in time that is logarithmic in the
number of pixels [29]: starting with the full image, each
step runs multiple threads, each of which compares two
positions of the output of the previous step and stores
the position of larger response value. After dlog ne itera-
tions, the maximal value and its position have been iden-
tified. To achieve maximal efficiency of such an argmax
routine knowledge of the internal GPU hardware archi-
tecture is required in order to make optimal use of cache
memory and to avoid read/write conflicts. Luckily, find-
ing the maximal entry of a matrix is a common enough
that adjustable templates in the CUDA language are al-
ready available as open source software [30]. For RTblob,
we adapted these to perform the argmax search instead
of the max. In total, the necessary steps for detecting
the object in a 640 × 480 images takes only little more
than 1 ms on an NVIDIA GeForce GTX 280 graphics
card. Consequently, we achieve a throughput of over 800
frames per second, see Section 6.

10) Sub-Pixel Refinement

Computing the object position by a filter or template
match results in integer valued object coordinates. We
can improve this estimate by refining the solution found
to sub-pixel accuracy. Using finite differences to the neigh-
boring positions, we expand the quality surface of Equa-
tion (3) or (4) into a second order Taylor polynomial
around [û, v̂]. A better estimate of the object position
is then given by the coordinates of the extremal point
of the resulting quadratic surface, and we can calculate
these analytically, see [31].

11) Transfer Object Coordinates: GPU to CPU

In contrast to step 3) where we copied the image data
from the CPU to the GPU, the task of transferring the
detected 2D object position back to the CPU’s main
memory is of negligible effort, because it consists of only
a few bytes of data. In our table tennis setup, we subse-
quently send the data via a real-time network link to a
different workstation that is responsible for robot plan-
ning and control. In general, such a split between two
PCs is not necessary, but we found that in our setup
we had to avoid interrupt conflicts between the CUDA-
enabled graphics driver and the CAN-bus interface for

6

[û, v̂]=(393, 353), val=1.88 [û, v̂]=(372, 347), val=2.26 [û, v̂]=(624, 42), val=0.49 [û, v̂]=(4, 6), val=0.28

Fig. 3 Example steps of the processing pipeline: camera images after debayering (first row), color filtering (second row) and
shift invariant filtering (third row). The last row contains the positions and values of the maximal filter score (Equations (2)),
with (0, 0) being the top left corner, which are also visualized as boxes in the first row. The left two images show a stereo
pair where in both images the ball position is identified correctly and with high confidence (green squares). In third column,
a ball is also present in the image, but it is small and dark in the background (blue square). The argmax prediction results
in a false positive detection (red square). The fourth column image does not contain a ball, so prediction with the maximal
filter position (red square) also leads to a false positive. Note that the maximal filter value in the incorrect examples is lower
than for the correct score. By correctly adjusting a threshold most misdetections will be avoided. (the images were gamma
corrected and contrast enhanced for better visibility).

robot control, both of which make use of real-time priv-
ileges for hardware access.

12) Triangulation

After having the 2D object positions from all cameras
available, we can recover the object’s position in 3D
world coordinates by triangulation. For each camera pair
(i, j) we use the cameras’ projection matrices (Pi, Pj) to
recover the lines of sight passing from the cameras’ op-
tical centers through the image planes at the detected
position ([ui, vi], [uj , vj]) using the projection equations

Pi

XYZ
1

 = λi

uivi
1

 and Pj

XYZ
1

 = λj

ujvj
1

 . (6)

where λi and λj are unknown proportionality factors.
Ideally, the lines will intersect at the object’s location
(X,Y, Z) ∈ R3. Because in practice numerical and esti-
mation errors prevent this from happening exactly, we
estimate the object position as the point of closest dis-
tance between the lines in 3D space, see [32]. This trian-
gulation step is of negligible computational cost, so we

do not require GPU support for it. Consequently, it can
be performed on the fly either on the vision workstation
or the robot workstation.

If the object is in the field of view of more than just
one camera pair, we can obtain multiple estimates of
(X,Y, Z). To increase the solution stability, we use the
position for which the 2D object detectors had higher
confidence values. Alternatively, one could increase the
solution accuracy by averaging over all detected position.
We did not follow this approach, as the region where
more than two camera’s field of view overlap is small in
our setup, and we would like to avoid the risk of intro-
ducing outliers by averaging over misdetections.

4 Parameter and Filter Selection

By choosing a linear detection model we made sure that
the number of free parameters remains small. Apart from
hardware dependent quantities, such as the camera pro-
jection matrices, camera gain and gamma factor, only
two choices need to be made: the reference color (Rref,
Gref, Bref), and the filter mask F . Both have an impor-
tant influence on the quality of the detection process.

7

Fig. 4 Schematic visualization of the camera setup used for
robot table tennis: the left camera pair observes the robot and
part of the table, the right camera pair observes the rest of
the table and the opponent. A central area of overlap allows
easier camera calibration.

The reference color can typically be chosen as the dom-
inant color of the object itself, e.g . a bright orange for
the ball in the example of Figure 2. However, the track-
ing stability can sometimes be increased by adjusting the
reference color in order to avoid high responses on back-
ground objects. Such adjustment are typically easiest to
do in an interactive way, because the interest image of
Equation (1) can be recomputed and visualized on-the-
fly.

For setting the filter mask different approaches are
possible. A classical setup for finding balls in images con-
sists of applying a fixed band-pass filter, e.g ., a Laplacian
of Gaussian (LoG) or difference of Gaussian (DoG) filter.
Both have been found to be reliable detectors for circu-
lar “blobs” of fixed size [33, 34]. Alternatively, matched
filters [35] or adaptive correlators [36, 37] can be used,
which have the advantage that they can also detect more
general patterns. Finally, when labeled training data is
available, discriminative machine learning techniques can
be used to compute an optimal filter mask [38]. In our
setup, we have found a hybrid of manually designed and
learned filters to yield good results: we first learned a
filter in an active learning setup [39]. Subsequently we
manually constructed a weight vector based on the char-
acteristics that the learned filter has identified. It con-
sists of a central ellipse of positive value, surrounded by
a larger elliptic annulus of negative value, such that over-
all the filter value sum up to zero. The decision to use
ellipses instead of circles comes from the analysis of the
learned filter weights: The learning system had identified
that the object appearance is not fully rotationally sym-
metric, see Figure 2, possibly due to the non-isotropic
illumination in our lab environment.

5 Camera Setup

The computing power of our GPU based object tracker
allows for the processing of over 800 2D image per sec-
ond, which we currently utilize to process four 200 Hz
image streams in an interleaved setup. We organize the

four cameras as two camera pairs, where each pair ob-
serves approximate half of the 3D space that has to be
monitored. A small central area of overlap allows the
calibration of one camera pair using estimates of object
positions obtained from the other pair. Figure 4 illus-
trates the setup chosen: the four cameras are installed at
the corners of a 3.2m times 5m rectangle in a height of
2.75m. Together, they observe a non-rectangular work-
ing space that is approximately 2.7m long and 1.4m wide
at the height of the table (0.76m), and that reaches a
height of 1.3m above the ground at the position of the
net.

Alternatively, one could make all cameras observe the
same working volume, which provides us with more in-
dependent measurements of the objects position, poten-
tially increasing the system’s overall accuracy. It would
also be possible to utilize the higher GPU processing ca-
pacity with only a single camera pair, e.g . by filtering an
image multiple times to detect objects that are not rota-
tionally invariant, to track multiple objects of different
color. The latter, for example, allows the implementation
of a simple marker-based tracking for applications such
as pole balancing that require not only the position but
also the orientation of an articulated object.

5.1 Camera Calibration

In the camera setup we chose there is only a small amount
of overlap between of the field of views of the camera
pairs, because we aim for a large overall volume to be
monitored. A disadvantage of this setup is that the robot
arm itself is visible only in one of the pairs and a direct,
ground truth based calibration of the other cameras is
not possible. We overcome this problem by a two-stage
calibration procedure: first, we calibrate the internal and
external parameters of those cameras that monitor the
robot’s working space. This is achieved by mounting a
calibration object, in our case just a table tennis ball,
to the robots end-effector, and moving the robot along
prespecified trajectories. With object positions [u, v] as
they are detected in the images and the object coordi-
nates (X,Y, Z) provided by the robot, the only unknowns
in the projection equations (6) are the camera matrices
Pi. Because we cannot be sure that the measurements
are error free, we use least-median-of-squares (LMedS)
estimation to determine Pi [32]. This technique is slower
(it takes seconds to minutes) than a simpler least-square
estimate (which takes only milliseconds), but it often
superior in terms of the robustness of results achieved,
because it allows up to 50% of outliers to be present.

For the remaining cameras, which do not have the
robot in their field of view, we perform a similar, but in-
direct, procedure. We move a calibration object manually
through the area of overlap between the field of view the
already calibrated cameras and the so far non-calibrated
ones, and we record the detected positions in all camera

8

images. We do not need ground-truth world coordinates
for these trajectories, because we can use the coordi-
nates obtained by triangulation from the calibrated cam-
era pair for world coordinates. Based on these, we solve
Equation (6) for the remaining cameras using LMedS.

A subsequent parameter refinement would be possi-
ble using, e.g ., bundle-adjustment [40], but in our tests
this did not lead to improved overall accuracy.

Of course, the RTblob setup is not specific to robot
based camera calibration. Any classical self-calibration
technique could be applied as alternative to the described
setup, as long as it provides the camera matrices Pi as
output.

6 Experiments

In the following, we show how RTblob performs in real-
istic setups. In particular, we can use ground truth data
of a robot trajectory to obtain quantitative results on
throughput, latency and accuracy in a realistic tracking
task.

6.1 Throughput

We first report the performance of the RTblob system in
terms of processing speed. For this, we run RTblob on a
system with four streaming cameras and we change the
number of image streams that RTblob processes. Table 1
summarizes the resulting CPU load and detection frame
rates. The main result is that using only off-the-shelf
hardware, RTblob can perform close to 830 detection
operations per second when processing a single 200 Hz
image stream, while causing a CPU utilization of 20%
(user load). An additional 21% CPU utilization occurs
due to operating system activity (system load).

The detection frame rate can be higher than the cam-
era’s fixed capture speed here, because we do not enforce
the GPU’s image processing loop to be synchronized
with the image capture process. This allows us, e.g ., to
filter the same camera image multiple times, either to de-
tect multiple objects of different colors in the same cam-
era stream, or to search for not rotationally invariant ob-
jects using differently rotated filter masks. Alternatively,
we can interleave the image streams from multiple cam-
eras: as the table shows, the additional debayering re-
quired makes the CPU utilization increase up to 46% for
four cameras stream. As the total GPU throughput re-
mains roughly constant, the per-stream detection speed
is linearly lower when processing multiple stream than
when processing a single one. Note that during the mea-
surement for Table 1 all four cameras are running, we
only change if their image contents is processed or not.
Consequently the system load, which mainly consists of
network transfer overhead, is constant.

of cameras CPU load (user/system) detection speed
1 ≈ 20% / ≈ 21% 829± 1 Hz
2 ≈ 31% / ≈ 21% 419± 1 Hz
3 ≈ 38% / ≈ 21% 282± 1 Hz
4 ≈ 46% / ≈ 22% 207± 2 Hz

Table 1 Processing speed when a varying number of cameras
streams are processed. CPU utilization caused by RTblob it-
self (user load) grows roughly linearly with the number of
camera streams to be processes. CPU utilization due to op-
erating system calls (system load) remains stable.

Fig. 5 Illustration of tracking accuracy. Left: detected 3D
trajectory (blue) compared to ground truth as measured by
the robot (green). Right: histogram of differences between the
curves.

6.2 Accuracy and Latency

Another important aspect of a real-time system it its
latency, i.e. the delay between the point of time that
an event occurs, and the time its effect occurs in the
system’s output. For RTblob, we can estimate the total
latency by attaching a trackable object directly to the
robot arm’s and moving the arm in a trajectory that
is an overlay of sinusoids with different frequency and
phase. The latency can then be read off as the time offset
between the trajectories as recorded by the robot, and
the trajectories measured by the vision system. In our
setup, latency is typically one, sometimes frame units,
so not more than 10ms when the cameras run at their
maximal speed.

With the same experimental setup, we can also mea-
sure the tracking accuracy. For this, we calculate the
mean distance between the trajectories after having com-
pensated for the time delay. Figure 5 shows an excerpt of
the resulting X-, Y - and Z-curves for a tracking run with
60 Hz. It shows that apart from an occasional overesti-
mation of the x-coordinate (which is the depth direction
and therefore most susceptible to calibration artifacts),
the accuracy is generally below 20 millimeters in each
coordinate. This is a very satisfactory result in our sit-
uation where the observed scene is located more than 5
meters from the cameras.

9

7 Extensions and Future Work

As explained in the introduction, it is part of RTblob’s
design decisions to provide a simple and modular base
platform for object detection. Several possible extensions
and methods for achieving increased performance and
robustness come to mind.

In particular, many camera setups support higher
frame rates when using regions of interest. In combi-
nation with a tracking approach, this could yield even
higher framerates support without increased hardware
requirements. A problem of the current linear detection
step is the dependence of the optimal filter mask to
changes of the environmental conditions, in particular
global illumination. Computer vision research has in-
vented a number of technique to overcome this, e.g . gradient-
based features and these could also be integrated into
RTblob without sacrificing too much of its simplicity and
speed. Alternatively, the detection module could be ex-
changed for a Hough-transform based setup, which is
known to be more robust to illumination changes, but
requires more effort to parallelize on the GPU.

A similar drawback of the chosen LSI detection is
that a single filtering step only detects objects of fixed
size. While complete scale independence would not be a
desirable property, because the observed size is a valu-
able cue to distinguish between the object and back-
ground components of the same color, a limited toler-
ance to scale changes is necessary in order to deal with
the effects of perspective. Currently, the filter masks has
to be chosen accordingly, which limits the object shapes
we can search for, or one has to process the image multi-
ple times with filters that correspond to differently sized
objects. A more elegant solution would be to work in
a scale space representation, see [33]. Adapting the fil-
tering stage accordingly should introduce only relatively
little overhead, because all modern graphics cards have
builtin routines to efficiently rescale images. Introducing
rotation invariance in this way is more difficult, but at
least for subclasses of object, such as elliptic ones, we
consider steerable filters [41] a promising direction and
we plan to explore this in future work.

8 Conclusion

We have described RTblob, to our knowledge the first
software system for high-speed 3D object detection that
requires only off-the-shelf hardware components and is
publicly available. RTblob is not the most precise object
detection system available. Commercial solutions, e.g .
the Vicon MOTUS system achieve higher precision even
for articulate objects, but they are also less flexible and
much more expensive. It is also not the overall fastest
solution for object detection: some hardware-based so-
lutions, e.g . [16, 18], achieve higher throughput, even
though at a lower resolution and only by using much

more expensive hardware. RTblob is designed with the
objective of finding an optimal compromise: on the one
hand, it is fast and accurate enough for challenging re-
alistic applications, as we have demonstrated by its use
as visual input source for a robot table tennis player. At
the same time, because it consists only of free software
components and runs on standard PC hardware, it is in-
expensive and almost effortless to set up. Consequently,
we believe that RTblob has the potential to become the
seed for a standard platform for interactive applications
as well as a valuable teaching tools for GPU accelerated
high-speed vision tasks.

References

1. U. Handmann, T. Kalinke, C. Tzomakas, M. Werner,
and W. Seelen, “An image processing system for
driver assistance,” Image and Vision Computing,
vol. 18, no. 5, pp. 367–376, 2000.

2. J. Miura, T. Kanda, and Y. Shirai, “An active vi-
sion system for real-time traffic sign recognition,” in
IEEE Intelligent Transportation Systems, 2000, pp.
52–57.

3. D. Tock and I. Craw, “Tracking and measuring
drivers’ eyes,” Image and Vision Computing, vol. 14,
no. 8, pp. 541–547, 1996.

4. T. Kirishima, K. Sato, and K. Chihara, “Real-time
gesture recognition by learning and selective con-
trol of visual interest points,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27,
no. 3, pp. 351–364, 2005.

5. R. H. Liang and M. Ouhyoung, “A real-time contin-
uous gesture recognition system for sign language,”
in International Conference on Automatic Face and
Gesture Recognition, 1998, pp. 558–567.

6. C. Stauffer and W. E. L. Grimson, “Learning pat-
terns of activity using real-time tracking,” IEEE
Transactions on Pattern Analysis and Machine In-
telligence, vol. 22, no. 8, pp. 747–757, 2000.

7. B. Williams, G. Klein, and I. Reid, “Real-time
SLAM relocalisation,” in International Conference
on Computer Vision, 2007.

8. A. Davison, W. Mayol, and D. Murray, “Real-time
localisation and mapping with wearable active vi-
sion,” in Proceedings of the IEEE International Sym-
posium on Mixed and Augmented Reality, Tokyo,
2003.

9. A. Comport, E. Marchand, and F. Chaumette, “Sta-
tistically robust 2d visual servoing,” IEEE Transac-
tions on Robotics, vol. 22, no. 2, pp. 415–421, April
2006.

10. U. Frese, B. Bäuml, S. Haidacher, G. Schreiber,
I. Schaefer, M. Hähnle, and G. Hirzinger, “Off-the-
shelf vision for a robotic ball catcher,” in IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2001. Proceedings, vol. 3, 2001.

10

11. B. Jähne, Digital image processing: concepts, algo-
rithms, and scientific applications. Springer Berlin,
1995.

12. S. Mizusawa, A. Namiki, and M. Ishikawa, “Tweez-
ers type tool manipulation by a multifingered hand
using a high-speed visusal servoing,” in IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2008. IROS 2008, 2008, pp. 2709–2714.

13. P. Viola and M. J. Jones, “Robust real-time face de-
tection,” International Journal of Computer Vision,
vol. 57, no. 2, pp. 137–154, 2004.

14. S. Avidan, “Support vector tracking,” IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, vol. 26, no. 8, pp. 1064–1072, 2004.

15. K. Shimizu and S. Hirai, “CMOS+FPGA vision sys-
tem for visual feedback of mechanical systems,” in
IEEE International Conference on Robotics and Au-
tomation, 2006, pp. 2060–2065.

16. Y. Watanabe, T. Komuro, and M. Ishikawa, “955-fps
real-time shape measurement of a moving/deforming
object using high-speed vision for numerous-point
analysis,” in IEEE International Conference on
Robotics and Automation, 2007, pp. 3192–3197.

17. U. Mühlmann, M. Ribo, P. Lang, and A. Pinz, “A
new high speed CMOS camera for real-time track-
ing applications,” in International Conference on
Robotics And Automation, 2004, pp. 5195–5200.

18. Y. Nakabo, M. Ishikawa, H. Toyoda, and S. Mizuno,
“1ms column parallel vision system and its appli-
cation of high speed target tracking,” in IEEE In-
ternational Conference on Robotics and Automation,
2000, pp. 650–655.

19. “Compute Unified Device Architecture Program-
ming Guide,” NVIDIA. Santa Clara, CA, 2007.

20. “Camera link: Specifications of the cam-
era link interface standard for dig-
ital cameras and frame grabbers,”
http://www.machinevisiononline.org/public/articles/
index.cfm?cat=129, 2000.

21. “GigE vision: Camera interface
standard for machine vision,”
http://www.machinevisiononline.org/public/articles/
index.cfm?cat=167, 2005.

22. X. Tong, H. Lu, and Q. Liu, “An effective and fast
soccer ball detection and tracking method,” in Inter-
national Conference on Pattern Recognition, vol. 4,
2004, pp. 795–798.

23. G. S. Pingali, Y. Jean, and I. Carlbom, “Real time
tracking for enhanced tennis broadcasts,” in IEEE
Conference on Computer Vision and Pattern Recog-
nition, 1998, pp. 260–265.

24. T. d’Orazio, C. Guaragnella, M. Leo, and A. Dis-
tante, “A new algorithm for ball recognition using
circle Hough transform and neural classifer,” Pat-
tern Recognition, vol. 37, pp. 393–408, 2003.

25. R. Kimmel, “Demosaicing: image reconstruction
from color CCD samples,” IEEE Transactions on

Image Processing, vol. 8, no. 9, pp. 1221–1228, 1999.
26. J. Lewis, “Fast template matching,” in Vision Inter-

face, vol. 10, 1995, pp. 120–123.
27. R. Brunelli and T. Poggio, “Template matching:

Matched spatial filters and beyond,” Pattern Recog-
nition, vol. 30, no. 5, pp. 751–768, 1997.

28. F. Crow, “Summed-area tables for texture map-
ping,” Computer Graphics, vol. 18, no. 3, 1984.

29. G. E. Blelloch, Prefix Sums and Their Applications.
Morgan Kaufmann, 1991.

30. M. Harris, S. Sengupta, and J. Owens, “Parallel pre-
fix sum (scan) with CUDA,” GPU Gems, vol. 3,
no. 39, pp. 851–876, 2007.

31. Q. Tian and M. Huhns, “Algorithms for subpixel
registration,” Computer Vision, Graphics, and Im-
age Processing, vol. 35, no. 2, pp. 220–233, 1986.

32. R. Hartley and A. Zisserman, Multiple view geome-
try, 2nd ed. Cambridge University Press, 2000.

33. T. Lindeberg, Scale-Space Theory in Computer Vi-
sion. Kluwer Academic Publishers Norwell, MA,
USA, 1994.

34. S. Hinz, “Fast and subpixel precise blob detection
and attribution,” in IEEE International Conference
on Image Processing, vol. 3, 2005, pp. 457–460.

35. G. Turin, “An introduction to matched filters,” IRE
Transactions on Information Theory, vol. 6, no. 3,
pp. 311–329, 1960.

36. J. Zeidler, J. McCool, and B. Widrow, “Adaptive
correlator,” 1982, US Patent 4,355,368.

37. D. Flannery and S. Cartwright, “Optical adaptive
correlator,” in Third Annual Aerospace Applications
of Artificial Intelligence Conference, 1987, pp. 143–
154.

38. K. Sung and T. Poggio, “Example-based learning for
view-based human face detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 1, pp. 39–51, 1998.

39. C. H. Lampert and J. Peters, “Active structured
learning for high-speed object detection,” in Sym-
posium of the German Pattern Recognition Society,
2009, pp. 221–231.

40. B. Triggs, P. McLauchlan, R. Hartley, and
A. Fitzgibbon, “Bundle adjustment – a modern syn-
thesis,” in Vision Algorithms: Theory and Practice,
ser. LNCS, vol. 1883, 2000, pp. 298–372.

41. W. T. Freeman and E. H. Adelson, “The design
and use of steerable filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 13,
no. 9, pp. 891–906, 1991.

